Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers

نویسندگان

  • Nanshu Lu
  • Shixuan Yang
چکیده

Quantifying naturally occurring strains in soft materials, such as those of the human body, requires strain gauges with equal or greater mechanical compliance. This manuscript reports materials and mechanics approaches are reported for an all-elastomer strain measurement device with gauge factor as high as 29 and with Young’s modulus that approaches that of the human epidermis. These systems use thin carbon-black-doped poly(dimethylsiloxane) (CB-PDMS) for the strain gauges due to its high resistivity and strong dependence on strain, and thick carbon-nanotube-doped PDMS (CNTPDMS) for the interconnects due to its comparatively low resistivity and weak dependence on strain. Devices composed of molded, straight resistors of CB-PDMS joined by serpentine-shaped interconnects of CNT-PDMS, both in a matrix substrate of PDMS, have electrical responses that depend almost entirely on the strain in the CB-PDMS. Integrated structures of this type have Young’s moduli of 244 kPa, which lies within the range of values for the human epidermis. Such sheets can be readily laminated on and form conformal contact to the human skin, with only modest mechanical constraints on natural motions. Strains measured in this mode on the wrist are between 11.2% and 22.6%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites.

Super-stretchable, skin-mountable, and ultra-soft strain sensors are presented by using carbon nanotube percolation network-silicone rubber nanocomposite thin films. The applicability of the strain sensors as epidermal electronic systems, in which mechanical compliance like human skin and high stretchability (ϵ > 100%) are required, has been explored. The sensitivity of the strain sensors can b...

متن کامل

Using Micro-Molding and Stamping to Fabricate Conductive Polydimethylsiloxane-Based Flexible High-Sensitivity Strain Gauges

In this study, polydimethylsiloxane (PDMS) and conductive carbon nanoparticles were combined to fabricate a conductive elastomer PDMS (CPDMS). A high sensitive and flexible CPDMS strain sensor is fabricated by using stamping-process based micro patterning. Compared with conventional sensors, flexible strain sensors are more suitable for medical applications but are usually fabricated by photoli...

متن کامل

Soft Material Characterization for Robotic Applications

In this article we present mechanical measurements of three representative elastomers used in soft robotic systems: Sylgard 184, Smooth-Sil 950, and EcoFlex 00-30. Our aim is to demonstrate the effects of the nonlinear, time-dependent properties of these materials to facilitate improved dynamic modeling of soft robotic components. We employ uniaxial pull-to-failure tests, cyclic loading tests, ...

متن کامل

The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates

The uniaxial compressive responses of silicone rubber (B452 and Sil8800) and pig skin have been measured over a wide range of strain rates (0.004–4000 s ). The uniaxial tensile response of the silicone rubbers was also measured at low strain rates. The high strain rate compression tests were performed using a split-Hopkinson pressure bar made from AZM magnesium alloy. High gain semi-conductor s...

متن کامل

A New Landslide Inclinometer Using Highly Sensitive Gauges

The paper presents a device devoted to detect and measure earth displacements produced by landslides. It is part of inclinometer type geotechnical instruments and is based on measuring the deformation produced to a rod vertically mounted into the ground during soil layers sliding. With respect to other commercial devices, our inclinometer is characterized by high sensitivity to very small defor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012